
RSA for poor men: a cryptosystem based on
probable primes to base 2 numbers
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Abstract. We show it is possible to build an RSA-type cryptosystem
by utilizing probable primes to base 2 numbers. Our modulus N is the
product n ·m of such numbers (so here both prime and some composite,
e.g. Carmichael or Fermat, numbers are acceptable) instead of prime
numbers. Moreover, we require for n and m to be co-prime only, and
so we don’t have to worry about whether any of the numbers n,m is
composite or not.
The encryption and decryption processes are similar as those in the RSA.
Hence, in this cryptosystem we may apply the above kind of numbers of
arbitrary length being still sure that the system works well. The price
for that is not so high: the size of a message M (as a number) permitted
by the new system must be smaller than log (in base 2) of n ·m.
The proposed cryptosystem can be applied in the case the numbers n,m
are ’sufficiently large’ for a user, or as a completion of the classical RSA if
m,n are probable primes but possibly not prime, or in a ’secret sharing’-
type cryptosystem.
The numbers n,m can be also taken from a narrower class of probable
primes to base 2 numbers, e.g., Euler, or strong, or Baillie-PSW.

Keywords: RSA · Probable primes in base 2 · Carmichael numbers ·
Fermat numbers.

1 Introduction and the result

In this article, we present a variant of the RSA cryptosystem, based on probable
prime to base 2 numbers instead of prime numbers. We assume that the reader
is familiar with the classic RSA and knows the basic facts of cryptography, see
e.g. [7]. For K > 1 an integer, Z∗

K denotes the multiplicative group of the ring
ZK , i.e., Z∗

K consists of all positive integers k < K co-prime to K, endowed with
multiplication modulo K. The symbol log2 r denotes the logarithm in base 2 of
a number r > 0.

1.1 Motivation and background

Let p, q be two distinct prime numbers. Set N := p · q, and let ϕ and λ be the
Euler and Carmichael, respectively, functions on N : ϕ(N) = (p−1) · (q−1), and



2 M. Wójtowicz

λ(N) = lcm(p − 1, q − 1). The classic RSA cryptosystem, built on p, q and N ,
encrypts and decrypts a message M ∈ Z∗

N using functions E and D, respectively,
of the form:

E(M) = Me(mod N), and D(C) = Cd(mod N)), (1)

where e, d ∈ Z∗
λ(N) fulfill the congruence

e · d ≡ 1(mod λ(N)). (2)

Since, by Euler’s formula

xϕ(N) ≡ 1 (mod N) for all x ∈ Z∗
N , (3)

λ(N) in (2) can be replaced by ϕ(N) because λ(N) is the least positive integer
t fulfilling the congruence

xt ≡ 1 (mod N) for all x ∈ Z∗
N . (4)

(and also ϕ(N) is trivially a multiple of λ(N)). The fact that E(D(M)) = M is
the result of congruences (1), (2) and (4)/(3).

The basis of this cryptosystem are two large prime numbers p, q. The problem
of primality of a given odd positive integer n is a fundamental issue in build-
ing cryptosystems utilizing prime numbers. For this purpose, we can use either
deterministic primality tests (based mainly on the Pocklington test [9], or AKS
[12, Section 21]), or check the primality of n by a probabilistic test such as the
Baillie-PSW, or Miller-Rabin test. For a recent review of the effectiveness of all
known methods of such tests see the paper by Albrecht, Massimo, Paterson, and
Smorovsky [1].

Each of these tests has both advantages and disadvantages. For example,
deterministic tests are effective for particular kind of numbers or have other
constrains, and probabilistic tests may give erroneous results: in 2005, Bleichen-
bacher [5] showed that the most popular probabilistic primality test, the Miller-
Rabin test, if not well implemented, may pass composite numbers with prob-
ability 1. More recently, similar results were published in 2014 by Narayanan
[10], and in the 2018 above-cited paper by Albrecht et al. [1]. Hence, every RSA
cryptosystem based on such numbers will not work properly.

In this paper, we present a variant of the RSA-cryptosystem free of these
drawbacks: it works well on every pair m,n of co-prime positive integers fulfilling
the congruence 2x−1 ≡ 1(mod x).

1.2 Probabilistic tests and probable primes in base 2

The simplest probabilistic test is based on Fermat’s little theorem: if the number
n is prime, then each integer a > 1 co-prime to n fulfills the congruence:

an−1 ≡ 1(mod n); (5)
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in particular (as n is odd by assumption),

2n−1 ≡ 1 (mod n). (6)

Hence, congruence (5), as well as its particular form (6), is a necessary condition
for n to be prime.

Simple probabilistic arguments show that if the number a is chosen randomly,
then the probability that n composite will pass test (5) is ≤ 1/2. Thus, if n fulfills
congruence (5) for a1, . . . , ak chosen randomly, the probability that n is prime
is ≥ 1− (1/2)k and tends to 1 as k →∞.

For n, a > 1 two co-prime positive integers, n is said to be a probable prime
to base a (PRP(a) for short) if it fulfills congruence (5). A composite number
which passes positively a test X, say, is referred to as pseudoprime (w.r.t. X).

It is known that

1. The set of all PRP(2)-integers contains an infinite number of composite
elements (e.g., Carmichael numbers [2]), along with all Fermat numbers Fk =

22
k

+ 1, k = 1, 2, . . . (see [8, Theorem 4.10]), and that
2. Pseudoprimes within the class of PRP(2)-integers are sparse: the probabil-

ity that a randomly chosen PRP(2)-integer n ≤ 264 is composite equals
2.79 · 10−10 (see [6] and [13, Table 2], cf. [4, Section 2]).

Odd numbers n satisfying Euler’s condition

a(n−1)/2 ≡ ±1(mod n), (7)

with a > 1 co-prime to n, constitute a narrower subclass of PRP(a)-integers,
and are called Euler’s probable primes to base a (EPRP(a) for short).

A much stronger probability test than (7) stems from the relation: if n is an
odd prime and n = 2αd+ 1 with α ≥ 1 and d odd then, for every a > 1 co-prime
to n,

either ad ≡ 1(mod) or a2
β ·d ≡ −1(mod n) for some 0 ≤ β < α. (8)

Every odd integer n > 1 satisfying (8) is called a base-a strong probable prime,
and the class of such numbers is denoted as SPRP(a). In particular, we have

SPRP (2) ⊂ FPRP (2) ⊂ PRP (2), (9)

with both inclusions proper [4, Subsection 2.2].

It is interesting to note that a combination of Fermat’s test (6) and a Lucas
test yields a strong probabilistic primality test, referred to as the Baillie-PSW
test, which is deterministic for numbers ≤ 264 ≈ 1.84 · 1019 (see [4, Section 3]).
Hence, we have a completion of the second/right inclusion in (9):

Baillie− PSW ⊂ PRP (2). (10)
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1.3 Construction of the new cryptosystem

In a few steps, we shall present below our idea of the new cryptosystem; it is
easy to see, it has most of the elements from the RSA cryptosystem.

Let us define a Carmichael-type function µ on pairs (n,m) of distinct odd
integers n,m > 1 by the formula

µ(n,m) = lcm(n− 1,m− 1) (11)

(hence µ equals the Carmichael function λ for n,m distinct primes). Now let
n,m be two co-prime PRP(2)-integers, and set N := n · m. Since µ(n,m) =
a · (n− 1) = b · (m− 1) for some integers a, b ≥ 1, from the congruences

2n−1 ≡ 1(mod n) and 2m−1 ≡ 1(mod m) (12)

we obtain 2µ(n,m) ≡ 1(mod n) and 2µ(n,m) ≡ 1(mod m), i.e., the number
2µ(n,m) − 1 is divided by both n and m, and hence by N = n ·m:

2µ(n,m) ≡ 1(mod N). (13)

Now we define two parameters e and d – the encryption and decryption keys,
respectively – similarly as in the classic RSA system: we choose e, d > 1 from
the multiplicative group Z∗

µ(n,m) fulfilling the congruence

e · d ≡ 1(mod µ(n,m)), (14)

i.e.,
e · d = 1 + k · µ(n,m) for some integer k. (15)

Further, with N as above, we define two functions E and D acting from the set
of positive integers into positive real numbers:

E(x) = 2x·e(mod N), and D(y) = log2(yd(mod N)).

We claim that E and D are well defined encryption and decryption functions
for all messages M less than log2N . (Notice, however, that D(y) is an integer if
and only if yd(mod N) is a power of 2, hence the proposed cryptosystem cannot
be applied to digital signing, in general.) This is stated in the theorem below,
and its proof is given in Section 3 of this paper.

Theorem. In the notation as above, for every integer/messageM with 1 < M <
log2N , we have E(D(M)) = M .

Remark 1. From (13) and (12) we obtain that the congruence 2t·µ(n,m) ≡
1(mod N) holds for every positive integer t, and that

2Φ(n,m) ≡ 1(mod N), (16)

where Φ(n,m) is an Euler-like function of n,m of the form Φ(n,m) = (n − 1) ·
(m − 1). Hence, in our cryptosystem, the function µ can be replaced by Φ (or
t · µ with t > 1 an integer) without changing the result.
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2 The Algorithm

In the description of the new algorithm we follow all steps of the RSA algorithm.

(KGA) Key Generation Algorithm

1. Generate two large co-prime PRP(2)-integers, n and m, of approximately
equal size such that their product N = n ·m is of the required bit length.

2. Compute N = m ·m and µ(n,m) = lcm(n− 1,m− 1).
3. Choose an integer 1 < e < µ(n,m) such that gcd(e, µ(n,m)) = 1.
4. Compute 1 < d < µ(n,m) such that ed ≡ 1(mod µ(n,m)).
5. The public key is (e,N) and the private key is (d,N).

(E) Encryption

Sender X does the following:

1. Obtains the recipient Y’s public key (N, e).
2. Represents the message as a positive integer M with 1 < M < log2N .
3. Computes C = E(M) = 2e·M (mod N).
4. Sends C to Y.

(D) Decryption

Recipient Y does the following:

1. Uses the private key (d,N) and computes the number M(2) = Cd(mod N).
2. Computes M = log2M(2).

Remark 2. By Remark 1, the function µ in the above Key Generation Algorithm
can be replaced by Φ.

3 Correctness of the Algorithm – proof of the Theorem

Because the numbers M(2) = 2M and N are co-prime with M(2) < N , the
’message’ M(2) lies in the multiplicative group Z∗

N . Therefore every power of M(2)

modulo N lies in Z∗
N too. Hence, the result of E, C := E(M) = Me

(2)(mod N),

belongs to Z∗
N . Then the formula C → Cd(mod N) sends C into an element of

Z∗
N , and the final element equals 2M : by (13) and (15), we obtain

Cd ≡Med
(2) ≡M

1+k·µ(n,m)
(2) ≡ 2M+k·M ·µ(n,m) ≡

2M · (2µ(n,m)) ≡ 2M (mod N),

and the latter equals just 2M because 2M < N . Therefore D(E(M)) = log2 2M =
M , as claimed.

Remark 3. By Remarks 2 and 3, the prof of the theorem goes the same lines as
above for Φ instead of µ.
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4 Example.

We give below an example to show how the algorithm works in a concrete case.

Step (KGA). We have generated two small composite co-prime PRP2-numbers
n = 341 and m = 645.

Hence N = 219 945 and µ(341, 645) = lcm(340, 644) = 54 740.
For e = 257, we obtain that d = 213 fulfills the congruence ed ≡ 1(mod 54 740).

Hence the public and private keys are (257, 219 945) and (213, 219 945), respec-
tively. The system accepts messages 1 < M < log2 219 945) = 17.74...

Step (E). Let M = 15. We encrypt M and compute C = E(M) =
2257·15(mod 219 945) = 175988.

Step (D). We compute M(2) = 175988213(mod 219 945) = 32768.
Finally, we compute log2M(2) = log2 32768 and obtain the sent message

M = 15.

5 Security and applications

1. The constraint M < log2N = log2 n+log2m forces the use of large numbers
n,m. For example, if we require M ≈ 2000 (i.e., our dictionary consists of
decimal words ≤ 2000) we need n,m of about 1000 bits each. By item 2 in
Subsection 1.2, the probability that n or m is composite is about 5.5 · 10−10

(and four time less for SPRP(2)-numbers - see the second column in the
first Feitsma’s table [6]). Moreover, for much larger n,m one can use the
Baillei-PSW test because there is not known, as yet, a composite number
n > 264 passing that test positively [4, Section 3].

2. The size of n,m depends heavily the ’time of living’ of M - it should be
much longer than the time needed for factorization of N .

3. The message M can also be devided into a finite number M1,M2, . . . ,Mk

of sub-messages such that their concatenation M1 ◦ M2 ◦ . . . ◦ Mk yields
M , and each Mi sent to a recipient via the above cryptosystem built on
randomly chosen sufficiently large co-prime PRP(2)-numbers (ni,mi) with
proper encryption and decryption keys (ei, di), i = 1, 2, . . . , k. Then, by item
2 in Subsection 1.2, the probability that the message M can be deciphered
is (5.6)k · 10−k·10. In practice, for k > 2, this is impossible.

4. Since computers ’like’ to work with numbers of type 2x, x > 1 an integer, the
proposed cryptosystem can be easily implemented on every laptop with the
use of on-line powering and logarithms in base 2. For example, the system
works well with numbers (n,m) of the form (Fr, 2Fr + 2t − 1), where Fr
is the rth Fermat number and t > 1 is an integer such that 2Fr + 2t − 1
is a PRP(2)-number. For r = 6 we may take t = 65, whence Φ(F6, 2F6 +
130 − 1) = 264 · (265 + 130). Then the least encryption key e = 5, whence
d = 272225893536750771729930377778311253197. This cryptosytem accepts
M < 129.
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