Swap on Curve

This is the fourth crypto challenge from ASCS 2021. It is an interesting question related to ECC.


One day, I tried to swap x and y coordinates of a Point on the Curve.


The point is still remains valid after swapping the x and y coordinates.

So objective is just to solve the equation :

\[\begin{cases} y^{2} \equiv (x^{3} + ax + b) \text{ mod} (P)\\ x^{2} \equiv (y^{3} + ay + b) \text{ mod} (P)\\ \end{cases}\]


The challenge can be solved just by using sage resultant and solve function.

from sage.all import *
from Crypto.Util.number import long_to_bytes

p = 10224339405907703092027271021531545025590069329651203467716750905186360905870976608482239954157859974243721027388367833391620238905205324488863654155905507
a = 4497571717921592398955060922592201381291364158316041225609739861880668012419104521771916052114951221663782888917019515720822797673629101617287519628798278
b = 1147822627440179166862874039888124662334972701778333205963385274435770863246836847305423006003688412952676893584685957117091707234660746455918810395379096

x,y = PolynomialRing(ZZ, ['x','y']).gens()
f = x**3 + a*x + b - y**2
g = y**3 + a*y + b - x**2

poly = f.resultant(g, y).univariate_polynomial().change_ring(GF(p))
for root in poly.roots():
    m = root[0]

flag : ACSC{have_you_already_read_the_swap<-->swap?}